Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition.

Publication Type:Journal Article
Year of Publication:2006
Authors:G. J. Fraser, Berkovitz, B. K., Graham, A., Smith, M. M.
Journal:Evol Dev
Date Published:2006 Sep-Oct
Keywords:Animals, Biological Evolution, Bone Morphogenetic Protein 4, Bone Morphogenetic Proteins, Epithelium, Fish Proteins, Hedgehog Proteins, Homeodomain Proteins, Models, Biological, Mouth, Oncorhynchus mykiss, Stem Cells, Tooth, Trans-Activators, Transcription Factors, Up-Regulation

Repeated tooth initiation occurs often in nonmammalian vertebrates (polyphyodontism), recurrently linked with tooth shedding and in a definite order of succession. Regulation of this process has not been genetically defined and it is unclear if the mechanisms for constant generation of replacement teeth (secondary dentition) are similar to those used to generate the primary dentition. We have therefore examined the expression pattern of a sub-set of genes, implicated in tooth initiation in mouse, in relation to replacement tooth production in an osteichthyan fish (Oncorhynchus mykiss). Two epithelial genes pitx2, shh and one mesenchymal bmp4 were analyzed at selected stages of development for O. mykiss. pitx2 expression is upregulated in the basal outer dental epithelium (ODE) of the predecessor tooth and before cell enlargement, on the postero-lingual side only. This coincides with the site for replacement tooth production identifying a region responsible for further tooth generation. This corresponds with the expression of pitx2 at focal spots in the basal oral epithelium during initial (first generation) tooth formation but is now sub-epithelial in position and associated with the dental epithelium of each predecessor tooth. Co-incidental expression of bmp4 and aggregation of the mesenchymal cells identifies the epithelial-mesenchymal interactions and marks initiation of the dental papilla. These together suggest a role in tooth site regulation by pitx2 together with bmp4. Conversely, the expression of shh is confined to the inner dental epithelium during the initiation of the first teeth and is lacking from the ODE in the predecessor teeth, at sites identified as those for replacement tooth initiation. Importantly, these genes expressed during replacement tooth initiation can be used as markers for the sites of "set-aside cells," the committed odontogenic cells both epithelial and mesenchymal, which together can give rise to further generations of teeth. This information may show how initial pattern formation is translated into secondary tooth replacement patterns, as a general mechanism for patterning the vertebrate dentition. Replacement of the marginal sets of teeth serves as a basis for discussion of the evolutionary significance, as these dentate bones (dentary, premaxilla, maxilla) form the restricted arcades of oral teeth in many crown-group gnathostomes, including members of the tetrapod stem group.

Alternate Journal:Evol. Dev.
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith